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Abstract : The study of the genetic basis of human male infertility is
complicated by genetic heterogeneity and because linkage analysis studies
are difficult. The study has been limited so far to the analysis of genes
located on the Y chromosome. Several genes and gene families have been
discovered and mutation analysis of these candidate genes in infertile
patients is ongoing. In recent years, several mouse models with impaired
spermatogenesis or fertility have also been analysed, expanding our
knowledge about the molecular basis of spermatogenesis and male fertility.
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INTRODUCTION

Male fertility is complex and depends
upon endocrine/paracrine regulatory
mechanism and morphogenetic processes
occuring during testicular development,
spermatogenesis and spermiogenesis. Male
infertility affects approximately 2-7% of
couples around the world. For about 30% of
men, infertility has a genetic origin (1). The
-genetic causes affecting male fertility can
therefore be mutations of genes that depress
steroid production (2), mutations of genes
that affect specifically germ cell
development or sperm function, and
mutations in genes that affect several

germ cell
sperm-egg interaction

male infertility
Y-chromosome

organs including testis (e.g. cystic fibrosis
gene, 3). Stress or environmental factors,
such as infection and pollution, have also
been described or suggested to cause male
infertility (4).

The present review will focus on our
understanding of genes required for
normal spermatogenesis and male fertility.
So far, very few of these genes have been
identified in humans, but several mouse
models with impaired spermatogenesis
and fertility have been described (5-7). In
the first part of this review we will
on the role of the human Y
chromosome in male infertility. In the

focus
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‘second part we will describe genes

important for male gametogenesis and
fertility identified through the analysis of
mouse mutants.

Y chromosome and male fertility

Until now, the search for genes involved
in human spermatogenesis and fertility has
been focused on the Y chromosome. The
involvement of the human Y chromosome
in male infertility was first suggested in
1976 by Tiepolo et al (8). In some infertile
men, Tiepolo and colleagues detected
cytogenetic deletions of the long arm of the
Y chromosome. Later, extensive molecular
studies have defined three deletion intervals
(AZFa, AZFb and AZFc for azoospermia
factors a, b and c¢) (Figure 1, 9-13).
Deletions of the AZFa region are associated
with azoospermia manifested by Sertoli cell
only syndrome (SCOS) or sometimes
with oligozoospermia (10, 14, 15). Deletions
of the AZFb region are associated
with azoospermia (SCOS, meiotic and
maturation arrest), oligozoospermia and
normozoospermia (10, 11, 16), whereas
deletions of the AZFc¢ interval are associated
with azoospermia (similar causes to that
observed with AZFb deletions) and severe
to mild oligozoospermia (10, 17, 18).
Detailed molecular analysis of the Y
chromosome (1€-21) has enabled the
identification of several candidate genes
within the AZF intervals.

Two genes, DFFRY and DBY have been
identified within the AZFa interval (22, 23—
25). DFFRY (Drosophila Fat Facets Related)
is expressed ubiquitously and encodes a
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Fig. 1: Y deletion intervals associated with defective
spermatogenesis.

ubiquitin specific protease closely related to
the Drosophila faf gene (26). DBY (DEAD
box on the Y) encodes a protein containing
the DEAD box motif found in RNA helicases
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(22). Sargent et al (24) have shown that
deletion of DFFRY but retention of DBY
leads to a milder oligozoospermia phenotype
whereas loss of both genes causes a more
severe Sertoli cell only syndrome. Sun et
al (27) described in a study of 500 infertile
men, a patient with a mild oligoazoospermia
with a 4 base pair deletion in the
DFFRY gene. None of these patient had
mutations in the DBY gene. The results of
these two studies suggest that DFFRY and
DBY may act synergistically to enable full
fertility.

In 1993, Ma et al (28) isolated the first
strong candidate gene from the AZFb
interval. They described two transcripts
mapping to this region that encode potential
RNA binding proteins. This family of genes,
named RBM (for RNA binding motif),
contains at least 30 genes and pseudogenes
that map to several locations on the human
Y chromosome including the AZFb interval
(29). Because the RBM genes form a
multicopy family, it is difficult to provide
direct evidence that they are critical to
spermatogenesis. Since, several other genes
and gene families have been mapped to the
AZFb interval (SMCY, ELFIAY and the
amplified gene families 77Y2 and PRY, 30),
they might also contribute to the AZFb
phenotypes.

The first candidate gene in the AZFe¢
interval was isolated by Reijo et al (18) in
1995. They identified a gene, named DAZ
(for deleted in azoospermia) that encodes
an RNA binding protein. Analysis of the
DAZ locus in the AZFc¢ region has
demonstrated that, like RBM, DAZ arises
from an Y-linked multicopy family (31, 32).
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DAZ is expressed specifically in testis (33)
and is related to a Drosophila fertility gene
named boule, which when mutated causes
azoospermia (34).

An autosomal homologue of DAZ has
been described in both human and mouse
but no DAZ gene has been found on the
mouse Y chromosome. The human gene
(named DAZLA), located in 3p24, is
expressed specifically in the testis and at
lower levels in ovary (31, 35—-37). The mouse
gene (Dazla) has been mapped to
chromosome 17 and is also expressed in both
male germ cells and the female gonad
(38, 39). Disruption of the mouse Dazla
gene leads to a complete loss of germ
cells, demonstrating the critical role of
this gene in both, male and female
gametogenesis (40). DAZ is an attractive
candidate for the AZFc phenotype, but
the existence of a gene family exacerbates
efforts to search for mutations. Other
genes have been mapped to the AZFc
interval (BPY2, PRY and CDY, 22). Stuppia
et al (41) have reported deletions of the
AZFc region causing infertility, that do not
remove DAZ genes, suggesting that other
loci in the AZFc interval may contribute
to fertility in addition to DAZ or that
modifying genes in the genetic background
of an individual may be able to compensate.

Genetic research into male infertility,
in the last 7 years, has resulted in the
isolation of several genes or gene families
on the human Y chromosome. Studies with
more infertile patients are required to
resolve the implication of these candidate
genes mapped in the different AZF

intervals.
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Mouse models

Identification of genes specifically
involved in human spermatogenesis and
fertility has been limited so far. Analysis of
natural or genetically engineered mouse
mutants has permitted the identification of
more loci and genes critical for
spermatogenesis and male fertility. More
than 50 natural mouse mutants with a
defective reproductive system have been
described (see list on the Mouse Genome
Database, http://www.informatics.jax.org).
Some mutants display a complete lack of
mature germ cells (e.g. mouse ged, germ
cell deficient) whereas others present
abnormal spermatozoa (e.g. mutant azh,
abnormal spermatozoa head shape). For
most of these mutations the locus has been
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precisely mapped on a chromosome but the
genes remain unknown.

Using overexpression of transgenes
or gene inactivation (by homologous
recombination or gene trap mutagenesis),
more infertile mice have been generated
and they can be used to study the
function of particular genes in mouse male
gametogenesis and fertility. Table I presents
a list of genetically engineered mouse
mutations affecting male reproduction.
This table has been divided into mutations
that have a specific testicular function
and those that have an additional
impact on other biological functions. We will
briefly describe two mouse mutants with
impaired spermatogenesis or fertility
respectively.

TABLE I: Genetically engineered mouse mutants with impaired spermatogenesis or fertility.

Genes Function Reference
Genes involved specifically in spermatogenesis or fertility
aromatase steroid metabolism 45
Bel2 anti apoptosis regulator 46
Bel-w anti apoptosis regulator 47, 48
Bel-x anti apoptosis regulator 49
Bmp8B bone morphogenetic protein 50
calmegin chaperone 51
Casein kinase Il a’ catalytic subunit regulation of metabolism 52
CREM transcriptional regulator 53, 54
c-ros tyrosine kinase receptor 55
cyclin Al cell cycle regulator 42
cyritestin sperm protein 56
E2F-1 transcription factor 57
Egr4 transcription factor 58
E-MAP-115 microtubule-associated protein 59
fertilin B sperm surface protein 43
Hr6B ubiquitin conjugating enzyme, DNA repair 60
HSF1 heat shock transcription factor 61
Hsp 70.2 heat shock protein 62

Pc4 processing of prohormones 63
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Pplc y protein phosphatase ; 64
Protamine 1 chromosome condensation 65
P2X, receptor ATP channel receptor 66
SCP3 chromosome pairing 67
Tarbp2 RNA binding protein 68
THEG protein assembly 69
transition nuclear protein 1 histone replacement/chromosome condensation = c i

Genes involved in spermatogenesis or fertility with other effects

A-myb DNA binding protein 71
ACE (angiotensin-converting enzyme) blood pressure regulation 72
Apaf-1 pro apoptosis regulator 73
apolipoprotein lipoprotein metabolism 74, 75
Atm mutated in Ataxia-telangiectasia 76,71
Basigin cell surface protein 78
Bax pro apoptotic regulator 79
Ca2+/calmodulin-dependent kinase IV transcriptional regulator 80
Cyclin-dependent kinase 4 cell cycle regulator 81
Dazla RNA binding protein 40
Dmel DNA recombination protein 82, 83
Estrogen alpha receptor steroid metabolism 84
Hoxal0 homeotic gene 85
HSL (hormone-sensitive lipase) obesity and steroidogenesis 86
Igfl insulin-like growth factor 1 87
Jun D transcription factor 88
Kit receptor tyrosine kinase cell signaling 89
Mlh1 DNA mismatch repair enzyme 90, 91
Msh4 DNA mismatch repair enzyme 92
Msh5 5 DNA mismatch repair enzyme 93
Na*-K*-2Cl cotransporter ion transporter 94
Nfia ; nuclear factor 95
Nhlh2 transcription factor 96
Nek1 polycystic kidney disease 97
OSP oligodendrocyte-specific protein 98
PDGF-A platelet-derived growth factor 99
Pms 2 DNA mismatch repair enzyme 100
Prolactin receptor lactation, reproduction 101
RAR a receptor retionoic acid receptor 102
RAR 7y receptor retinoic acid receptor 103
Rho GDIa Rho GDP dissociation inhibitor 104
RXR P receptor retinoic acid receptor 105
Telomerase : maintenance of chromosome 106
TLS (translocated in liposarcoma) RNA binding protein 107
Zfx zinc-finger transcription factor 108

*Infertility only in approximately 60% of homozygote male mutants.
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In 1998, Liu and colleagues described a
mutation in cyclin Al, a cell cycle protein
gene, that causes male infertility (42).
Mutant mice were generated by inactivating
the mouse Ccnal gene by homologous
recombination in embryonic stem cells. Ccnal
appears to be essential for spermatogenesis
and without dramatic effects in other tissues.
Female mice and heterozygote males were
fertile whereas Ccnal -/- males were
infertile. Testes from homozygote mutants
were smaller and spermatogenesis was
completely disrupted. Analysis of the
homozygote Ccnal-deficient mice showed that
the early testicular development was normal,
but spermatogenesis was arrested at late
meiotic prophase. A more detailed
characterization of this meiotic arrest, shows
an increase of spermatocyte apoptosis.

The phenotype of Ccnral -/- mice
establishes the essential role of cyclin Al
for the entry of male germ cells into the
first meiotic division. The lack of observable

. defects during oogenesis indicates different

mechanisms of regulation of meiosis between
the two sexes. Cyclin Al represents a novel
class of cyclin that performs an essential
male germ cell-specific function and can be
a good candidate gene for human male
infertility with meiotic arrest.

In 1998, Cho et al generated a mouse
model in which the gene encoding fertilin B
has been inactivated (43). Fertilin B along
with fertilin o forms a sperm surface protein
located on the surface of acrosome-reacted
sperm head, which interacts with integrin
receptors on the oocyte.

Homozygous mice deficient in the fertilin
B gene were infertile. Fertilin B -/- sperm
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were normal and underwent normal
acrosome reaction. In vitro sperm-egg
adhesion assays showed that the binding
and the fusion of the mutant sperm to the
egg membrane were reduced. Fertilin B -/-

sperm were also unable to adhere to the

zona pellucida and were rarely found in
the oviduct. These results show a direct
role of fertilin B in sperm-egg membrane
interaction. Recent results suggest that
fertilin B and o6PB1 integrin interact, via a
cooperation between 06B1 integrin and CD9
(present in the oviduct and on the egg, 44).
Such cooperation may assist sperm passage
into the oviduct as well as sperm-egg
interactions.

In humans, male infertility may occur
in the absence of obvious'sperm defects and
fertilin B may be a candidate gene. Other
genes involved in sperm-egg interaction
may also be promising candidates for
fertility defects. Analysis of mouse mutants
has expanded our knowledge about .the
molecular basis of spermatogenesis and
male fertility. However, for most of the
human cases of infertility, the genetic
defects remain unknown. Animal models of
male infertility are valuable tools to
identify candidate genes for particular
catagories of human male infertility.

CONCLUSION

With the sequencing of the human
genome near completion, the discovery of
all genes is expected. New genes that play
a role in spermatogenesis and male fertility
will be uncovered. This will lead to better
diagnostics and improved treatments of
male infertility.
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